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Abstract - Human analysts are often unable to meet time 

constraints on analysis and interpretation of large volumes of 
remotely sensed imagery.  To address this problem, the Image 
Content Engine (ICE) system currently under development is 
organized into an off-line component for automated extraction 
of image features followed by user-interactive components for 
content detection and content-based query processing.  The 
extracted features are vectors that represent attributes of three 
entities, namely image tiles, image regions and shapes, or 
suspected matches to models of objects.  ICE allows users to 
interactively specify decision thresholds so that content 
(consisting of entities whose features satisfy decision criteria) 
can be detected.  ICE presents detected content to users as a 
prioritized series of thumbnail images.  Users can either accept 
the detection results or specify a new set of decision 
thresholds.  Once accepted, ICE stores the detected content in 
database tables and semantic graphs.  Users can interactively 
query the tables and graphs for locations at which prescribed 
relationships between detected content exist.  New queries can 
be submitted repeatedly until a satisfactory series of prioritized 
thumbnail image cues is produced.  Examples are provided to 
demonstrate how ICE can be used to assist users in quickly 
finding prescribed collections of entities (both natural and 
man-made) in a set of large USGS aerial photos retrieved from 
TerraserverUSA. 

 
I. OVERVIEW OF ICE 

 
The Image Content Engine (ICE) is being developed at the 

Lawrence Livermore National Laboratory as a system for 
assisting human analysts in timely extraction of content and 
knowledge from large volumes of remotely sensed imagery.  It 
supports automatic extraction of features from images, 
followed by user-interactive detection of entities of interest 
stored in tables or semantic graphs, followed by user-
interactive table/graph query processing for generating cues to 
regions-of-interest containing entities with prescribed 
relationships to one another (see Fig.1). 

Like other systems, such as PicHunter [1] or SOM-AIR 
[2], ICE relies on an offline, compute intensive feature 
extraction process to provide source material for its databases.  
However, unlike other systems, ICE treats object detection as a 
separate user-interactive process that follows automated 
feature extraction.  By inserting the output of user-interactive 
detection into database or graph structures, the quality of data 
stored improves, along with the likelihood of successful 
subsequent queries.  Unlike PicHunter, ICE does not currently 

include the ability to provide relevance feedback during 
queries, although it is our goal to include this at a later date. 
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Fig.1  ICE overview. 

 
ICE deals with three types of entities: tiles, regions, and 

objects.  ICE automatically extracts user-specified features for 
each type of entity off-line.  Feature extraction is the most 
computationally expensive portion of the analysis process, and 
may require parallel processing in order to achieve satisfactory 
pixel throughput rates. 

Tiles are square evenly spaced adjacent or overlapping 
image blocks (often small) from which feature vectors are 
extracted.  Tile feature vectors form the basis for classifying 
image tiles by type (e.g., forested). 

Regions are extracted by using an image segmentation 
algorithm to group similar pixels together.  Region feature 
vectors capture generic spatial and spectral properties of 
regions.  Region feature vectors may also contain degrees of 
similarity (from 0 for poor similarity to 1 for perfect similarity) 
to specific shapes, such as ellipses or specific types of 
polygons (selected from a shape registry) so that regions may 
be later classified by shape type.  Regions are matched to 
shapes of specified type and arbitrary position-size-orientation 
using either the method of moments [3] or boundary matching 
[4]. 

Objects consist of one or more 3D components that can be 
spatially separated and are typically man-made (e.g., trucks, 
facilities that contain a particular arrangement of specific types 
of buildings, etc.).  Using a novel phase sensitive matcher [5], 
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projections of 3D object model edges onto the image (i.e., 2D 
object signatures) are matched to the image over all 
combinations of object position and orientation to produce one 
match similarity (from 0 to 1) at each position.  State vectors, 
consisting of match similarity, position and orientation, are 
stored as feature vectors for each local maximum in similarity 
that is not in conflict with other local maxima. 

ICE supports user-interactive detection based on features 
and match similarities that ICE previously obtained from 
images automatically in the feature extraction phase.  This 
provides human analysts the opportunity to regulate the 
content that gets stored in database tables and semantic graphs 
for later query and retrieval.  The analyst is allowed to 
interactively set thresholds on similarities between extracted 
entities and models of target entities.  ICE retrieves thumbnail 
images from a designated set of search images that contain 
detected entities (content), and then sorts them by figure-of-
merit.  The analyst can then decide which thumbnails 
correspond to valid detections so that only they get stored in 
database tables and semantic graphs.  Currently, the analyst 
can only specify a point in the thumbnail list above which all 
thumbnails are considered valid detections. 

In the future, ICE will support user-interactive query of 
content databases and semantic graphs as a means of analyst 
cueing.  However, an evolving query capability currently 
exists.  Analysts can specify how many detected entities of 
various types must be present in regions-of-interest, and can 
even provide some information about how the detected entities 
must relate to one another.  The semantic graphs capture 
information pertaining to local relationships between extracted 
content.  These relationships include “parallel to”, “in series 
with”, “connected to”, “close to”, etc.  The types of 
relationships captured are part of a growing list, and together 
with registries of admissible shapes and objects, characterize 
the ICE ontology. 

 
II. FEATURE EXTRACTION AND MATCHING 

 
The ICE feature extractor is a user-configurable 

application.  The input is a set of images to be searched, and 
the output is a set of files of extracted features and matches.  
The user can specify which tile features to extract, and which 
shapes and objects to match.  ICE converts this specification 
into a set of software pipelines.  One pipeline handles all tiles, 
another pipeline handles all regions/shapes, and one pipeline is 
assigned to each object type (see Fig.2).  Each pipeline 
corresponds to one pass through the images to be searched.  
For each pipeline, images are broken down into square blocks.  
Image block width is user-specified and determined by image 
spatial resolution and object size.  Image block overlap is 
either user-specified (for regions/shapes), or computed 
automatically (for tiles and objects). 

The regions/shapes pipeline preprocesses the image block 
(this involves brightness-contrast enhancement, de-speckling 
[6] and/or quantization), segments the block (using a 
coarseness regulation technique [7] that greatly improves 
segmentation quality [8]) and matches each region to one or 

more designated shapes stored in a shape registry.  The tiles 
pipeline divides image blocks into tiles of designated 
size/overlap and extracts designated features from each tile.  
The object pipelines use an FFT-based phase sensitive detector 
[5] to efficiently match projections of 3D models of object 
edges to the image at each position and orientation.  The user 
selects which objects to match from an object registry.  The 
output of phase sensitive matching is a surface of match 
similarities within which unambiguous local maxima are 
found.  A local maximum is said to be unambiguous if its 
object match does not overlap the object match associated with 
any other local maximum of greater or equal similarity value.  
State vectors (consisting of match similarity, position and 
orientation) are assigned to each unambiguous local maximum.  
ICE automatically computes the amount of block overlap 
needed so that objects will never be missed due to the fact that 
there is no block that they lie completely within.  Since the 
minimum required overlap increases with the extent of object 
projections in image space, and different objects often have 
different extents, each object typically requires a different 
block overlap resulting in different sets of blocks, and different 
sets require different pipelines.  Note that for each object and 
image block, there is one set of model projections.  The object 
is translated so that its centroid matches the geo-coordinates of 
the block center.  The object is then rotated over a full 360° set 
of rotations about the z axis, and each rotation is separately 
projected into the image block. 
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Fig.2  ICE pipeline structure. 
 

III. DETECTION AND QUERY PROCESSING 
 

User-interactive detection is based on the output of 
automated feature extraction.  For each type of entity (e.g., a 
wooded tile, a facility, an elliptical region, etc.), a human 
analyst deliberately chooses a similarity detection threshold 
that is too low, and ICE then returns thumbnail images of 
potential detections sorted by figure-of-merit.  The analyst then 
identifies a thumbnail for which most of the previous 
thumbnails in the list are valid detections, and most of the 
remaining thumbnails are false alarms.  ICE will also 
eventually allow the analyst to identify which specific 
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thumbnails correspond to valid detections.  For a given type of 
entity, the analyst can currently choose from among thumbnail 
sorting criteria based on max, mean and cumulative similarity, 
for which the figures-of-merit are the max, mean and sum of 
similarities of entities of designated type whose centroids lie 
within the thumbnail. 

Detected entities in the accepted thumbnails are 
committed to system database tables (one row contains 
features for one detected entity), which are suitable for 
standard database type queries (e.g., “Find all thumbnails from 
image set S containing regions of shape type A, that are within 
500 pixels of wooded tiles.”).        

                                      
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig.3 A graphlet constructed with content from one image 

block. 
 

Detected entities are also placed into semantic graphs, 
which provide a convenient way to capture relationships 
between detected entities.  Unlike relational databases, 
semantic graphs support queries that involve more complex 
relationships between detected entities (such as “Show me all 
areas that contain four or more parallel storage tanks, where at 
least one is next to a building.”).  ICE does not currently build 
semantic graphs that encompass the entire image.  Images are 
instead broken into thumbnail-size blocks for which smaller 
graphs (‘graphlets”) are built.  Graphlets contain three levels of 
nodes (see Fig.3).  The leaf nodes (level 3) correspond to 
individual detected entities.  The internal nodes (level 2) 
correspond to groupings of entities.  The root node (level 1) 
represents the entire thumbnail with high-level “summary” 
information (such as the number and type of entities detected 
in the thumbnail, the number of groups of parallel objects, 
etc.).  All level 2 nodes are connected to the root node.  Each 
level 2 node is connected to the level 3 nodes that belong to the 
set represented by the level 2 node.  Each level 3 node is 
connected to other level 3 nodes that it has an identified 

relationship with, and the links are labeled with the type of 
relationship (e.g., “close to”, “alongside”, etc.).  Summary 
information provides a convenient mechanism for dramatically 
reducing the number of graphlets that must be subjected to 
computationally expensive full sub-graph matching. 

 
IV. EXAMPLE 

 
Ortho-rectified images with 1m ground sample distance 

from five different areas of the US were downloaded from 
TerraserverUSA: Aspen (Colorado), Mammoth Lakes 
(California), Martinez (California), Omaha (Nebraska), and 
White Sands (New Mexico).  Each image covers roughly 6 km 
x 10 km (or is roughly 6000 rows x 10000 columns of pixels in 
size), and they collectively cover an area of roughly 300 km2 
on the ground (totaling roughly 0.3 gigapixels of imagery). 

Because the images are orthorectified, a 3D object will 
project the same at all locations within all five images, so in 
this case, only its 2D signature (projection) is needed.  Fig.4 
shows 2D signatures for an H-shaped building and a 
cylindrical storage tank of particular size alongside the five 
TerraserverUSA image chips.  Phase sensitive matching and 
match disambiguation required roughly 5-10 minutes per 
image chip per object on a 1.7GHz Pentium 4 processor. 
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Fig.4. Signatures and images for detection example. (images 
courtesy of TerraserverUSA) 

 
The ICE interactive detector was then used to present 

sorted thumbnails of candidate detections to a human analyst.  
For each object, the analyst then chose a thumbnail below 
which most of the thumbnails are false alarms.  The results are 
displayed in Fig.5.  The entire interactive detection session 
required only a few seconds – much faster than the nearly the 
30 minutes it takes for an analyst to search through the image 
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chips by hand, and for both objects, most, or all, of the objects 
were detected, and there were few or no false alarms.  H-
shaped buildings were only present in the White Sands image, 
whereas tank farms were present in both the Martinez and 
Omaha images. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

Fig.5  Thumbnail hits from the interactive ICE detector for the 
signatures in Fig.4. (Images courtesy of TerraserverUSA) 

 
V. SUMMARY 

 
The Image Content Engine (ICE) has been described.  It is 

an evolving system for providing time critical assistance to 
human analysts in analysis of large volumes of remotely 
sensed image data.  ICE employs a model for computer-
assisted analysis of remotely sensed images in which feature 
extraction and shape/object matching are performed off-line 
automatically, followed by user-interactive detection of 
discrete entities, and then user-interactive query processing to 
focus human attention on areas that contain collections of 
discrete entities that have prescribed relationships to one-
another.  Because feature extraction and matching are 
computationally expensive and there will be constraints on the 
amount of time available to analyze images, it will ultimately 
be necessary to host ICE feature extraction on parallel 
processing clusters.  Once the features have been extracted, we 
have demonstrated that ICE can dramatically reduce the search 
time for specific objects over large volumes of imagery. 
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